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Abstract

Traditional off-line global optimization is non-resilieand non-opportunistic. That is, traditional
global optimization is unresponsive to small perturbatiohthe objective function that require a
small or large change in the optimizer. On-line optimizatroethods that are more resilient and
opportunistic than their off-line counterparts typicatlgnsist of the computationally expensive
sequential repetition of off-line techniques. A novel ayguh to on-line global optimization is to
utilize the theory of evolutionary generation systems teettgp a technique that is resilient, oppor-
tunistic, and inexpensive. The theory of evolutionary gatien systems utilizes the probabilistic
sequential selection of a candidate optimizer from two ipbssandidates, basing the selection
on the ratio of the fitness values of the candidates and a paeamalled the level of selectivity.
Using time-homogeneous, irreducible, ergodic Markov id&0 model a sequence of local, and
hence inexpensive, decisions, this paper proves that seaikiohs result in the resilient and op-
portunistic determination of a candidate optimizer fonagiobjective function. In the limit as the
level of selectivity tends to infinity, the theory guarargdleat the candidate optimizer is a global
optimizer. The optimization of flapping wing gaits illustkea the theory.
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Chapter 1

Introduction

This paper is devoted to the problem af-line optimization[1-7], which seeks an optimizer

x* € D for a real-valued objective function
F:D—-R:z— F(x), (1.1)

under the assumption that, during implementation, the iasmany motives and opportunities
to re-compute a candidate optimizer. This problem is sintdats more traditional off-line coun-
terpart [8-12] in that they both seek an optimizer. Howewemnff-line optimization[13], the
candidate optimizer is computed once, and its computasioot revisited during implementation.
For this reason, off-line optimization is non-responsiweeérturbations of the objective function
in two ways: non-resiliency and non-opportunism, which iflustrated in Figs[ 1L (&) ar{d (b).
Specifically, small changes in the objective function mayuree small changes in the optimizer
(which happens when the optimizer depends continuoushhemerturbation), or large changes
in the optimizer (which happens when the optimizer depemtodtinuously on the perturbation),
respectively. Hence, the motivation for on-line optimiaatis that in practice, the objective func-
tion on which the candidate optimizer is implemented may ifferént from that for which the
candidate was designed.

The sequential repetition of off-line techniques resutt®n-line optimization methods that
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Figure 1.1: Off-line optimization strategies yield resulthat are non-resilient and non-
opportunistic.

are more resilient and opportunistic than their off-linaucterparts. However, such sequential
repetitions can be computationally expensive, a fact theg be shown by either an amortized
analysis [14] or a competitive analysis [1, 2]. Therefohe, goal of this paper is to find an on-line
global optimization strategy that is resilient, opporsiit, and inexpensive.

More specifically, this paper shows thational behavior[15] is a sufficient condition for
resiliency and opportunism. The work then proposes a eesiand opportunistic, on-line, global
optimization scheme based on the novel concept of selegdireration, which utilizes the ratio of
the fitness values of two candidate optimizers and a parameted the level of selectivity. In the
limit as the level of selectivity tends to infinity, the scheiguarantees that the selected candidate
optimizer is a global optimizer. Although rational behavdaggests optimization decisions that are
based on global knowledge, this paper proves that ratiymaky be achieved through a sequence
of decisions using only local knowledge of the objectivedtion. Thus, the proposed scheme is
also computationally inexpensive at each step.

The original contributions of this work include the follavg.

¢ A novel mathematical definition of selection, tBelect function, for use in probabilistic

optimization.

e A demonstration that the canonical genetic algorithm witie§s proportional selection and

the (1+1) evolutionary strategy are particular cases oharse utilizing theSelect function.
e A proof that selective generation is a sufficient conditionritional behavior.

e A proof that rational behavior is a sufficient condition fesiliency and opportunism.
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e An analysis of the effect that the level of selectivity hagesiliency and opportunism.

e The identification of system-theoretic properties of act@le generation scheme, including

equilibria and their stability and optimality properties.

e The evolution of flapping wing parameters for the purposeaéttory-tracking by a flap-

ping wing vehicle.

The remainder of the paper is as follows. Chapier 2 preseatiitidamentals of a theory of
evolutionary generation systems that utilizes a novelmehfor fithess-based selection. Chapter
documents how evolutionary generation systems are éiftdrom other evolutionary compu-
tation strategies in the literature. Chagtér 4 proves thatfficent condition for resiliency and
opportunism is rational behavior. Chaptér 5 furthers theritical results by demonstrating that
resiliency and opportunism may be achieved inexpensivedyaeh step. Chaptkf 6 illustrates the
theory by means of an analytically treated example. Chapagplies the theory to the optimiza-

tion of flapping wing gaits. Chaptéf 8 presents conclusions.



Chapter 2

Theory of Evolutionary Generation Systems

The theory in this chapter is based on concepts from Gepar&iistems Theory (GST) [16]. GST
formalizes the self-reproduction oélls a term describing any entity that is capable of producing
an offspring regardless of its physical nature. A robot, etdx@um, or even a piece of software
code is considered to be a cell in this theory if they can eactyze another robot, bacterium or
some lines of code respectively. These cells utilize resmito self-reproduce. A selected resource
is manipulated by the parent cell via an embedded generatition to produce an outcome.

We now extend these ideas to develop a theory of evolutiogangration systems. For opti-
mization, a cell is any element of the domain of the objedhtivection (1.1) and a resource is any
input that facilitates a transition between cells. Fumhere, it is possible that resources are chosen

probabilistically. Consistent with these notions, we mdieefollowing definition.
Definition 1. An evolutionary generation systeisia quadrupl€ = (X, R, P, G), where
e X isasetofncells X = {zy,29,...,2,};
e Ris aset ofm resourcesk = {ry,79,...,7rn}, that can be utilized for cell reproduction;

e P: R — (0,1] is aprobability mass function o, given by P(r;) = Pr[R = r;] = p;,

TZnZ pr = 1;and
k=1



e G : X x R — X is ageneration functiorthat maps a parent cell and a resource into a

descendant cell outcome.

Use of the adjectivevolutionaryhere is consistent with biology [17], where evolution is de-
fined as the genetic changes in a biological population tbetiroevery generation due to genetic

changes from parent to descendant.

Example 1. A random walk ovelZ” is an example of an evolutionary generation system. Take
X =7 R ={ze;, 1 <i < v} (wheree; are the standard basis vectors ), let P be the
uniform probability distribution oveR, and defingz : X x R — X : (z,r) — y =z +r. The
sequence of cells over the generations of this evolutioganeration system becomes a random

walk.

Let(r,) = (r1,rs,...,7,) be asequence gf resources fronk. We define the notation
G (z,(ry) =G(...G(G(z,r1),12) ..., 7)) (2.1)

to denote the cell produced hyusing sequence-,). This is illustrated in Fig. 2]1 as a directed
graph.
1 T2 Ty

g € (x?rl) G(x, () . G(x, iru))

Figure 2.1: The directed graph 6f(z, (r,,)).

Definition 2. The set of cells, X, of the evolutionary generation systetn= (X, R, P,G) is
reachablethroughG andR if, for all pairsz;, x € X, there exist& € N and a sequende;) € R

such thatey = G (1, (1))-

Note that reachability of the cells of an evolutionary getien system is identical to that of
reachability of the vertices of a directed graph in Graphoriz¢18].
In Definition[1, the restriction that the offspring of a ced liself a cell implies that the set of

cells isclosed[19], since there is no feasible transition to any elemeligida X . If the set of cells
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is also reachable, thek is said to barreducible[19]. The previous example of a random walk
overZ” is an example of an irreducible evolutionary generationesys

We associate each cell with a non-zero, positive performamdex that is a measure of the
fitness of the cellF' : X — R*. The notion of fitness facilitates the following novel mattatical

definition of selection.

Definition 3. Given a cell setX, and a fitness functiof' : X — RT, letSelect : X x X xN — X
be a random function such thatif, =, € X are any two cells, an®y € N is thelevel of selectivity

then

r,  Wwith probabilityﬁ

(Fe)
14+( £
Select(xy, 29, N) = ey (2.2)
xy  with probability ———.
2 ()

We can now define a selective evolutionary generation syEs&sS).

Definition 4. A selective evolutionary generation syst&sma quintuplel’ = (X, R, P,G, F),

where
e (X, R, P,@) is an evolutionary generation system;
e [': X — RT is afunction that evaluates cell fitness;
¢ the set of cellsX, is reachable throug& and R; and

e the dynamics of the system are given by

X(t+1) = Select(X(t), G(X(t), R(t)), N). (2.3)

In (2.3), X (t) denotes the realization of a random cell variable at tinfe(¢) denotes the real-
ization of a random resource variable at timé&'(X'(t), R(t)) denotes the offspring of the realized
random cell utilizing the realized random resource at timand X'(0) has a known probability

mass function.



Also in (2.3), the probability of a cell realization at soméure time given the present cell
realization is conditionally independent of the past tingtdry of cell realizations. Thus, the
dynamics of a SEGS form a discrete-time homogeneous Markaind20]. This property is
useful for the SEGS analysis conducted in Chdgter 5.

The two central tenets of Darwin’s theory of evolution [17¢ @mbodied in Definitionl4.
1) Undirected variatiorvia the generation function. Permissible undirected Waa include

e mutationsof all or part of a cell,

e recombinationof the constituent elements of a cell with the constitueatrants of an-

other (resource) cell,

¢ inheritanceof all or part of a cell when the generation function maps alpart of a cell

to itself, and

e drift of the constituent elements of a cell, as certain elemefrftodbecome fixed due to

the nature of the probability mass function over the resosgt.

That is, we impose no restrictions on the nature of the untiitevariation process, thereby
capturing all biological and computational mechanismscieating diverse offspring. As we
shall see, eveflow, the sudden addition or removal of cells, is captured by baoty, since

this process may be modeled by unexpected perturbatiohg dtmess function.
2) Natural selectiorvia the Select function.
The Select function has a number of interesting properties, including

e Forall NV,

N
Pr[Select(xy, xo, N) = 1] _ (F(x1)> _ (2.4)

Pr[Select(xy, xo, N) = x9] F(x)

That is, the ratio of the probabilities of selecting any tvedi<is equal to the ratio of their

respective fitnesses raised to the power



e For N = 0, the values of'(z,) andF'(x,) are irrelevant. That is,

Pr[Select(xy,x9,0) = x1] = 1/2, and (2.5)

Pr[Select(z,x9,0) = 23] = 1/2. (2.6)

e WhenN = oo, if F(x1) > F(x2) then
Pr[Select(xy, x9,00) = 1] = 1. (2.7)
On the other hand, if'(z,) < F(x9) then

Pr[Select(x1, xe,00) = x9] = 1. (2.8)

o If F(x1) = F(z5) then, for allN,

Pr[Select(xy,x9, N) = 1] = 1/2, and (2.9)

Pr[Select(xq,x9, N) = 9] = 1/2. (2.10)

The level of selectivity N, has a biological interpretation as well. Suppose that theds of
a cell is measured by the total number of descendants prddwee k& generationsk > 1. This
prolificity is typically calledfuture reproductive valuer fecundity{17]. When a colony is initiated
by two self-reproducing progenitors andx,, the ratio of the descendant population fractions

afterk generations equals the ratio of the respective future dejatove values,
F($1)>
: 2.11
(F (22) ( )

After k generations, the ratio of the probability of choosing, byd@m sampling, a descendant

of z, to the probability of choosing a descendantzefis equal to the ratio of the descendant



population fractions,[(2.11). Correspondingly, the ratidh® probability of selecting:;; at the
initial time to the probability of selecting, at the initial time, [(Z.4), is identical to the ratio of the
respective prolificities[(2.11), with/ = 1.

Now consider the following sequence of operations.

1. Initiate a colony with two self-reproducing progenitarsandx,, and let descendants be

produced fork generations.

2. Extract a sample from the resulting population. Use tmepda to initiate a second colony,

and let descendants be producedi@enerations.
3. lterate the sample and colony initiation procedure @mtiN™ colony is produced.

Then, the ratio of the probability of selecting a descendént; to the probability of selecting a

descendant of, using this multi-step process becomes

(o) () () = (Rs)

and it is now clear thatV represents the number of selections that are made, asswariing

generation fecundity interpretation of fitness.
A recent, well-publicized, biological experiment that fitss multi-selection model is [21].
Two polyethylene degrading strains of bacteria were isdlat this study as a result of the repeated

selections of the progeny of soil bacteria that were foraedeed on a polyethylene enriched

medium.



Chapter 3

Comparative Literature Study

A SEGS as described by Definitioh 4 can be utilized as an evolaty optimization algorithm
(Chaptetb) to take advantage of its guaranteed propertieseTare works in the optimization lit-
erature that appear to be similar: reinforcement learr2@g simulated annealing [23,24], genetic
algorithms [25—27], and evolutionary strategies [28—&ldmparisons between these optimization
methodologies and a SEGS approach can be made, and thiercisagevoted to providing such
comparisons to outline the distinctions between appraadbher each of the optimization method-
ologies, we quantify the ratio of the probability of selegtia candidate optimizer df (1.1) to the
probability of selecting the optimizer’s offspring. By coarng this resultant ratio t¢ (2.4), we

demonstrate the originality of our theory of evolutionagngration systems.

3.1 Reinforcement Learning

In reinforcement learning (RL) [22], a decision-making agekes actions in an environment and
receives a corresponding reward. The traditional RL prolketo determine the best policy or
sequence of actions that maximizes the total reward. Theréwa major differences between
our work and RL. First, evolutionary generation systems mhemes not allow changes in the
tactics of individual cells, since there are fixed, probabd rules for generation outcomes in

place. That is, the generation action taken by a particahisalways the same but the outcome
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varies probabilistically due to selection. Second, RL sek&dong-term maximization of reward
of a policy of cell-action pairs, while a SEGS focuses on piulistically increasing the short-term
reward from one cell-action pair. The different goals hamesequences for responsiveness: an RL
approach may not adapt the optimal policy if individual eadtion pair rewards are perturbed.

To facilitate a comparison between RL and a SEGS, considdoliogving deterministic rein-
forcement learning problem. Let andzx, be the labels of two terminal cells, and let the current
cell, also labeled:;, be capable of a one-step transition to either of the twoiteaheells. Hence,
there are two possible policies: 1) a transition fropto x;, and 2) a transition from; to z,. Let
the reward of cell; be F'(z;). Using value iteration, the cost-to-go of the current céthwpolicy
1)is

Vi = F(21) + F(x1) = 2F (), (3.1)

and the cost-to-go of the current cell with policy 2) is

Since RL chooses the policy with maximum reward, the ratichefgrobability of selecting the

terminal cellz; to the probability of selecting the terminal cell is

Pr[z, is selected
Pr[z, is selectefl

ind (2F (z1) > F (1) + F (2))

3.3
ind (F (z1) + F (x2) > 2F (11))’ (3:3)
whereind denotes the indicator function, satisfying
ind(True) =1, (3.4)
ind(False) = 0. (3.5)

This ratio is different from[(2]4).
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3.2 Simulated Annealing

The simulated annealing algorithm [24] randomly samplesséarch space at, evaluated’(z;),
and accepts new candidate optimizeraccording to the Metropolis criterion. This criterion spec
ifies that cells with better fithess are always acceptedenNeds fit cells are accepted with a prob-
ability that depends on the relative fitness with respecdhéocurrent celk:;, and a “temperature”

parametefl’. The equation for the probability of selecting the less fit, ce, is

Pr[z, is selecte= ps4 = exp ( (3.6)

F(z3) = F(21)
T Y
whenevelF’ (z,) > F (x9). Therefore, decreasing the temperature or increasingtagve fitness
decreases the acceptance probability of less fit states.

The ratio of the probability of selecting the current camdédoptimizer:; to the probability of

selecting another candidate optimizgris

Pr[z, is selecte
Pr[xz, is selectefl

1 — (ind (F (x9) > F (x1)) + ind (F (z1) > F (x2)) psa)
ind (F (22) > F (1)) +ind (F (z1) > F (22)) psa

(3.7)

This ratio is different from[(2]4).

3.3 Genetic Algorithms

The canonical genetic algorithm [25] models each cell osis@rch space;,, as a binary string of
length/ to which a fitness valué'(z;) is associated. The algorithm outline [32] follows:

1: choose an initial population

2: determine the fitness of each individual

3: perform selection

4: repeat

12



5.  perform crossover

6:  perform mutation

7. determine the fitness of each individual
8: perform selection

9: until some stopping criterion applies

We are interested in the probability that a cel], of the population at Lingl4 is chosen to
be a member of the population for the next generation (ifeer ane iteration of the repeat loop)
without experiencing crossover or mutation. We then compiais probability to the probability
that an offspring ofr; is a member of the population at the next generation. Let tbhbgbility
of crossover ofr; with another binary string bg. € (0, 1), and let mutation of thg-th bit of z,
occur independently with probability,, € (0, 1).

Of the many kinds of selection processes (e.qg., fithesseptiopal selection, tournament selec-
tion, or truncation selection) that can be applied to thisad#la populationy’, let us first consider

fitness-proportional selection. The probability of comesidg x; with this selection process is

Pr[z; is considerep= ;(Iil()y) (3.8)

yey

Hence, the probability that an unchanged candidate optimiz, is a member of the population

for the next generation is

Pr[z, is selectef= (1 — p.)(1 — pm)lz%. (3.9)

yey

If x5 is an offspring ofz; that undergoes crossover with probability undergoes mutation a@f
bits with probabilityp,,, and is subjected to fithess-proportional selection, ibhexs a member of

the population for the next generation with probability

ik F(22)
> F(y)

yey

Pr[z, is selectefl= p.pF (1 — p,,) (3.10)

13



Thus, the ratio of the probability of selecting to the probability of selecting, becomes

Pr[z, is selected
Pr[z, is selectefl

(1—pe) (1 —pn)* F(z1) _ o Ela)
Pe pr, F(xo) F(xzy)

, K > 0. (3.11)

Although the equation above is similar fo (2.4), it demaatsts that in the canonical genetic algo-
rithm using fithess-proportional selection, the ratio déston probabilities is proportional to the
fitness ratio. In[(3.11), if = 1 we obtain a particular case ¢f (2.4) wheYe= 1.

With tournament selection, the probability of considerings

Pr[z, is consideref=

ps € (0,1), if, Vy €Y, F(x1) > F(y),
ps(1 = ps), if [{yeY |F(y) > F(x)} =1,
ps(1 = py)2, if {yeY |F(y)>F(x)} =2, (3.12)

ps(L—p)YI7t if [{y e Y | F(y) > F(a1)} = Y| — 1.

Usingrank(z) to denotd{y € Y | F(y) > F(x)}|, the probability that an unchanged candidate

optimizer,z1, is a member of the population for the next generation is

Prz, is selectef= (1 — p.)(1 — pn)'ps(1 — ps)rk@), (3.13)

If x5 is an offspring ofz; that undergoes crossover with probability undergoes mutation a@f
bits with probabilityp,,, and is subjected to tournament selection, it becomes a ereailihe

population for the next generation with probability

Prz, is selectefl= p.pk (1 — pm ) Fps(1 — py)rank(@2), (3.14)
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Thus, the ratio of the probability of selecting to the probability of selecting, becomes

Prlz, is selectel (1 —p.) (1 — pm)k (1 — p,)rank(er) -
Pr[z, is selectefl  p. pE (1 — p,)rank(e)

K (1 — pg)ransten)mrank(z) | j¢ 0, (3.15)
This result is different froni (214).
With truncation selection, the probability of consideringis

. : Y
Pr[x; is consideref= ind (rank (1) < ’2’> . (3.16)

Hence, the probability that an unchanged candidate optimiz, is a member of the population
for the next generation is

Pr[z, is selectefl=
(1 —pe)(1 — pp)tind (rank (1) < |}2/|> . (3.17)

If x5 is an offspring ofz; that undergoes crossover with probability undergoes mutation of
k bits with probabilityp,,, and is subjected to truncation selection, it becomes a raewitthe

population for the next generation with probability
Pr[z, is selectefl=

Y
ety (1 = pm)' " ind (rank (z2) < ’2’> . (3.18)
Thus, the ratio of the probability of selecting to the probability of selecting, becomes

Pr[z, is selected
Pr[xz, is selectefl

15



1—p.) (1 —p,,)"ind (rank (x <
( P ) ( f ) ‘ ( ( 1) ;)’ (3.19)
Pe Pm  ind (rank (x9) < 7)
ind (rank (z;) < X1
_K (rank (r) 2), K >0 (3.20)

ind (rank (x2) < M)

2

This ratio is different from[(2]4).

3.4 Evolutionary Strategies

Like genetic algorithms, the general evolutionary stra{@@] operates on a population of cells of
the search space df (1.1). Typically, a parent populatiosize;, creates an offspring population
of size A using crossover and mutation processes, wifarent cells required to produce one
offspring. Crossover does not occupit= 1. Selection of the population for the next generation
of the algorithm occurs by picking thebest cells from the offspring (known as théu/p, A)-ES
strategy), or by picking the best cells from the total population af + A cells (known as the
(u/p + M\)-ES strategy).

The (1 + 1)-ES strategy [33] is most similar to evolutionary genemasystems theory. Here,
one candidate optimizer;, produces one mutated offspring candidate optimizgrand the ratio

of the probability of selecting; to the probability of selecting, is simply

Pr[z, is selectefl  ind (F (x1) > F (x3))

Pr[z, is selectefl  ind (F (zy) > F (21)) (3.21)

This ratio equald.(214) when the parametéein (2.4) isoc.
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Chapter 4

Markov Chains That Behave Rationally

In this chapter, we develop a Theory of Rational Behavior [bB}iine-homogeneous, irreducible,
ergodic Markov chains. We then discuss the entropy, res§i@nd opportunism of Markov chains

that satisfy the axioms of this theory.

4.1 Markov Chain Rational Behavior

Let (X, P) be a time-homogeneous, irreducible, ergodic Markov chelrere X = {xy, zo, .. .,

x,} is the set of states of a Markov proceBse R"*" is the matrix of transition probabilities for
these states, and< oc is the number of states. Assume that the initial probaldligyribution over

the states is known, i.e., we are givenvamectorp(0) having elementg;(0) = Pr[X(0) = ;| for

all z; € X, whereX(0) denotes the state realization at titheand we havefj1 pi(0) = 1. Since

we have assumed that the statesXirare ergodic and irreducible, they ao;r_nit a unique stationary
probability distribution [19,20]. Letr = |, 7, ... =,| be the row vector of these stationary
probabilities, satisfying the constraints > 0 Vi, andfjlm = 1. Let F : X — R* be a positive

fitness function. LetV € N be a natural number. We define rational behavior for this iark

chain as follows.

Definition 5. The time-homogeneous, irreducible, ergodic Markov cli&inP) is said tobehave

17



rationally with respect to fitness’ with level N if

T F(x;) N o
7Tj_<F(:Ej)> , 1<, 7 <n. (4.1)

This definition is consistent with [15] because time avesamad ensemble averages are equal
in an ergodic process. The requirement that- 0 Vi with fjl m; = 1 corresponds to the ergodic
postulate of [15], and the requirement thét> 0 corresp;_nds to the selective (i.e., retardation)
postulate. Note that we have recast the requisite scalatifumof [15] as a reward, instead of a
penalty.

Each stationary probability can also be explicitly chagazed to ensure Markov chain rational

behavior, as is indicated by the following theorem.

Theorem 1. The time-homogeneous, irreducible, ergodic Markov cli&inP) behaves rationally

with respect to fitnesg with level V if and only if

N
> F ()
k=1
Proof. See Appendix. O

Here, we have a more general, probabilistic version of themigation in (1.1). A Markov
chain that behaves rationally will select the state of maxmfitness with the highest stationary
probability, and, in the limit agv approacheso, this probability is 1. The problem and solution
then revert to one of standard optimization.

Remarkably, rational behavior in Markov chains is the resudt subsidiary optimization.

Theorem 2. The stationary distributionr of the time-homogeneous, irreducible, ergodic Markov
chain (X, P) that behaves rationally with respect to fitndssvith level NV solves the optimization
problem

n

min () = — > F(z;)" In(m;), (4.3)

T1seeey Tn =1

18



subject to the constraints

Zﬂ'i = 1, (44)

=1

m > 0, Vi. (4.5)
Proof. See Appendix. O

Note that in[(4.11), rational behavior is invariant underities scaling of fitness. Hence, there

is no loss of generality in assuming that the fitness funasamrmalized. Accordingly, lep =

©1 s ... ,| bethedistribution of thev™ power of fitness, where
F(z)N
%Zn(gjl)]valﬁiﬁn' (4.6)
EF

Definition 6. A vectorv € R is apositive mass function of orderif it satisfiesv; > 0 Vi, and

i v, = 1. LetDD,, be the set of positive mass functions of order
k=1

The vectorp € R™ is a positive mass function. Let

O(mr)

U(r) = ——— (4.7)
> F(xy)
k=1
Then, the optimization problernh (4.3) can be normalized as
7rmin U(m) =— Z%‘ In(m;), (4.8)
LT i=1

subject to the constraints (4.4) and {4.5). Furthermoreofdéni 2 states that at the optimum, the

stationary distribution agrees with the fitness distribti.e.,w = .
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4.2 Entropy of Markov Chains That Behave Rationally

Definition 7. Entropy[34] is the function

H:]D)n—>]R:go»—>H(go):—zn:gpiln(gpi). (4.9

Using the notion of entropy, we can interpret (4.8) as folowFirst, we recognize the term
—In(m;) as the information content of statg[34]. Hence, the right hand side 6f (4.8) represents

the “fitness-expectation of information.” Moreover, we &dke following:

Corollary 1. The time-homogeneous, irreducible, ergodic Markov cl{anP) behaves ratio-
nally with respect to fitness’ with level N if and only if its stationary probability distribution
minimizes the fithess-expectation of information. At thexapn, this fithess-expectation of infor-

mation is the entropy of the fitness distribution, i.e.,

Ut = Hig) ==Y eilne) (4.10)

A basic property of entropy that is alluded to in [35] and whieill be utilized in the proof of
Theoreni_1R follows.

Theorem 3. Lety € D, be arbitrary. Then,

min — zn: w; In(m;), (4.11)

ﬂ'E]D)n i=1

has a minimum value df () that is achieved atr = .

EquivalentlyvVe € D,,, V& € D,
=Y wiln(m) > =) wiln(p), (4.12)
i=1 i=1
with the equality holding if and only # = ¢.
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EquivalentlyVyp € D,,, ® € D,,,

—> piln (;) > 0, (4.13)
=1 ?

with the equality holding if and only # = ¢.

Proof. See Appendix. O]
For Markov chains that behave rationally, and thereforesgss fitness fractions that are dis-

tributed over the set of states aslin {4.6), the entropy dfiesmhow egalitarian or elitist the states

are. That is, the entropy is highest when all states havel éitpess; conversely, the entropy is

lowest when there is only one state with a fithess fractiomdfiand all other fitness fractions are

zero. Equatior((4]9) arises in other well-known fields, andlar interpretations for the distributed

quantities and the entropy exist [34-37].

4.3 Resiliency and Opportunism of Markov Chains That Be-
have Rationally

We can now formally define resiliency and opportunism, fiesatibed through Fid. 1.1, as the

sensitivity of the stationary distribution to changes ind#s.

Definition 8. For any time-homogeneous, irreducible, ergodic Markovrcha', P) with a pos-
itive fitness function for all the states iK, the extrinsic resiliencyof statez; to changes in the

fitness of state;, j # i, is defined as

3 5

Pij = , (4.14)
J aF(in)
and thentrinsic resiliencyof stater; to changes in its own fitness is taken to be
87@»
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Since the stationary distributiom has the closed form expressidn (4.2) for the time-homo-
geneous, irreducible, ergodic Markov ch&iXi, P) that behaves rationally with respect to fitness

F with level N, the extrinsic and intrinsic resiliencies are

or; ~Nmm; ..
= = 4.1
87@- . N’/TZ' (1—7@)

Pi = 9F () Flx)

(4.17)

We say that the Markov chaipX, P) is resilient and opportunistid p;; # 0 for all  and;.

The level of selectivity has the following asymptotic effea resiliency and opportunism.

Theorem 4. For the time-homogeneous, irreducible, ergodic Markovieh&', P) that behaves

rationally with respect to fithesg with level N,

i = Dy =0, 4.18
Pij Voo piil (4.18)

and
]\}1_1}20 pij = ]\}1_{%0 pi = 0. (4.19)
i

Proof. See Appendix. O]

As a result of Theoreml 4, we have quantification that standgtithization (V = oo) is non-
resilient. Moreover, recall that if we assumé-generation fecundity interpretation of fithess as in
Chaptef 2, theV = oo also represents an infinite number of selections madefogenerations.
There is much biological evidence to confirm that prolongdddive breeding yields non-resilient
strains [38—42].

Resiliency and opportunism is a direct outcome of Markov rchational behavior, as stated

below.

Theorem 5. The time-homogeneous, irreducible, ergodic Markov cHainP) is resilient and

opportunistic if the chain behaves rationally.
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Proof. See Appendix. m

Resiliency and opportunism do not always imply Markov chational behavior (see Chapter

[6). But we can state the following instead.

Theorem 6. Ergodicity is a necessary condition for the time-homogeseareducible Markov

chain (X, P) to be resilient and opportunistic.
Proof. See Appendix. ]

Furthermore, there is a fundamental trade-off betweennsitrand intrinsic resiliency that is
imposed by the constrairﬁi m; = 1. Taking the partial derivative of this constraint with respto
i=1
the fitness of state;, we obtain

87@ n aﬂ'j
J#

_ 0. (4.20)

Note that, from[(4.16) and (4.1 7), the extrinsic resili@scare always negative, whereas the in-
trinsic resiliencies are positive. Henck, (4.20) implieattany change in fitness that improves a
state’s intrinsic resiliency is at the expense of the esicimesiliency of all other states. Similarly,
any change in fitness that improves a state’s extrinsicieasy is at the expense of the intrinsic

resiliency of another state, and the extrinsic resilierfcgllother states.
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Chapter 5

Selective Evolutionary Generation Systems

as Markov Chains That Behave Rationally

This chapter applies the Theory of Rational Behavior for tinmeaogeneous, irreducible, ergodic
Markov chains (as developed in Chapter 4) to a SEGS as foretuiatChaptelr]2. We begin with

some preliminaries.

5.1 Analysis of Selective Evolutionary Generation Systems

Definition 9. LetI' = (X, R, P, G, F') be a selective evolutionary generation system.a,et; €

X be any two cells, and, € R be a resource. Thdescendancy tensar, has elements

1 ifa; =G(x,re), 1<i,j<n, 1<k<m,
Sijk = (5.1)

0 otherwise.

Hence, the descendancy tensor indicates whether it isljp@dsi produce celk; in one step
from cell z;, using resource,. We can use this tensor to create a matrix that represents the
conditional probability of generating; given that the progenitor is;, by utilizing the probability

of selecting each available resource and summing ovet afisources as follows.
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Definition 10. For the SEGS’ = (X, R, P, G, F'), thematrix of generation probabilitiesy, also

called the unselective matrix of transition probabilifieas elements

v;; = Pr[offspring isz; | progenitor isz;], (5.2)
=Y ik, 1 < i,j <n. (5.3)
k=1

This matrix is a stochastic matrix, as indicated by the feilg lemma.

Lemma 1. For the SEGS’ = (X, R, P, G, F') with matrix of generation probabilities,

Y yj=11<i<n. (5.4)

j=1
Proof. See Appendix. ]

Recall that a SEGS follows the stochastic Markov processritestby [2.8). Therefore, we
can find a matrix of transition probabilities to describe ted-to-cell transitions that occur as
a result of the selection dynamics. For the SEIGS (X, R, P, G, F'), thematrix of transition

probabilities P, has elements

Py =PrlX(t +1) = 2, | X(t) =z, (5.5)

=Pr[Select(x;,x;, N) = x; | X(t) = ;]

Pr|offspring isz; | progenitor isz;] (5.6)
1 . .
— W Vij Vi # i,
N
= . (5.7)
Vi + 22 ﬁ%’j; if j =i
=t (765)

Note that the matrix of transition probabilities [n (5.7)iso a stochastic matrix:
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Theorem 7. For the SEGS' = (X, R, P, G, F') with matrix of transition probabilitie®,

Y Pj=1,1<i<n. (5.8)

j=1
Proof. See Appendix. O

In addition to irreducibility, if we assume that the seleatdynamics of the SEGS is ergodic,
then a unique stationary probability distribution over e of cells exists, and must satisfy the

following.

Theorem 8. For the ergodic SEGS$ = (X, R, P,G,F),letw = |7, 7, ... 7,| bethe row

vector of stationary probabilities, satisfyinﬁj m; = 1. Assume that there is a unique indéx,
i=1

such thatF'(z;) is maximized foi = I. Then,

A}immzo,lgign,i#l, (5.9)
J&l—rgo mr = 1. (5.10)
Proof. See Appendix. O

It is easy to extend this theorem and its proof to the caseevhir not unique and show that
the cells with equal maximal fitness are equiprobable. Faéhn bersions of the theorem, there
exist stationary probabilities equal to zero in the limitrdspproachesco because the stochastic
selection process becomes elitist instead of ergodic.

We can also examine the SEGS response to changes in séyeatidi cell fithess. First, the
probability of increasing fithess with every time step, donded upon knowledge of the current

cell, is

[F (X (E+1)) > F(X (1) [ X(t) = ]

Pr
:Zn:ind (F (25) > F () Py. (5.11)
i#i

P
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This conditional probability increases asincreases. However, the unconditional probability of

increasing fitness with every time step,

PriF (X (t+1)) > F(X(t))]

:izind (F () > F (x;)) Py, (5.12)

j:
JF

S

approaches zero in the limit &6 approaches infinity. That is, the unconditional probapitie-
creases a®/ increases. This (perhaps counter-intuitive) result is uhe elitist nature of the
resultant selection process — the cell with maximal fitnesss d stationary probability of 1, and
consequently, the probability of improving fitness is cepandingly 0.

Next, the effect of changes in cell fitness on elements of theirof transition probabilities,

P, is given by the following four equations:

oP, N 1

Vi # i, = Py, (5.13)
OF(xz;)  F(xj) 14 (};E?;)N j
0P -N & 1
& s (5.14)
OF(x;)  F(x;) ;1+ Fz)\N ™"
T2 (F(xi))
OP;; —N 1
Vi £, LY P, (5.15)
OF (z;)  F(x;) (1+ (IP;E:;JDN j
oP; N & 1
z Pi;. (5.16)
oF (z; Fl(z; z_: Fz)\NV ™Y
@) " P 51+ (2

In the first equation above, we see that an increase in theditfecellz; increases the probability
of transitioning to that cell from current celi, by an amount that is proportional to the level of
selectivity and inversely proportional to the fitness valliae second equation indicates a corre-
sponding decrease in the probability of transitioning iadke current cell under the same altered
fithess landscape. Unlike gradient ascent optimizatiorrevttee transition to another cell would

be directly proportional to the fitness value, what we have lie reminiscent of the retardation
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property in [15]; the stochastic process “slows down” tramss in more favorable fithess condi-
tions to take advantage of the external environment. Siraffacts on the transition probabilities

are suggested by the latter two equations for changes ierdusell fitness.

5.2 Dynamic Properties of Selective Evolutionary Generation
Systems

We can now state some intriguing dynamic properties of seéevolutionary generation systems,

under certain technical conditions.

Theorem 9. For the ergodic SEGS$ = (X, R, P,G, F'), assume that the matrix of generation
probabilities, v, is symmetric. Then the Markov chain representing the ststah dynamics of
the ergodic SEGS behaves rationally with fitnéssnd level N. That is, the row vectotr =

T m ... m,| Wherer; satisfies(4.2) is a left eigenvector oP, the matrix of transition
probabilities forI", with corresponding eigenvalue 1 (i.etP = ). Hence,r is the vector of

stationary probabilities for the SEGS.
Proof. See Appendix. O

As a result of Theorefn 5, the stochastic dynamics of the ecgalGS with symmetric matrix
of generation probabilitiesy, are resilient and opportunistic. Hence, a SEGS is a cortipogdly
inexpensive on-line technique to achieve these charatitarbecause only local decisions between
two candidate optimizers are made at any time. The need toageahe fitness of all elements in
the domain of the objective function_(1.1), or even in a soptpation of candidate optimizers (as
in genetic algorithms or evolutionary strategies), is dedi

The symmetry condition on the matrix of generation probtdd, v, implies that there exists
an equiprobable forward and reverse transition betweenpairyof cells prior to the selection

process. More specifically, symmetry 9fis a requirement that mutations be reversible. This
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reversibility requirement is satisfied in biology, and suaalitations are callettue back mutations

43, 44].

Theorem 10. For the ergodic SEG$ = (X, R, P,G, F'), assume that the matrix of generation
probabilities,~, is symmetric. Then the Markov chain representing the sistahdynamics of the

ergodic SEGS is time-reversible, i.e.,
Wi-Pij = Wiji, VZ,] (517)

Proof. See Appendix. O

As a consequence, the Markov chain representing the stoxztdgeamics of the SEGS and its

time reversed form are statistically the same.

Theorem 11. For the ergodic SEG$ = (X, R, P, G, F'), assume that the matrix of generation

probabilities,~, is symmetric. Consider the discrete-time dynamic systesrithed by
p(t+1) = p(t)P, (5.18)
whereP is the matrix of transition probabilities fdr, andp(t) is ann-dimensional row vector at
timet.
(1) This discrete-time dynamic system has an invariant folghiThe manifold is the set of vectors
p with componentg;(t) > 0, 1 < i < n, and fj pi(t) = 1.
=1

(2) The manifold has an equilibrium for these dynamieswith components; satisfying(4.2).

(3) The function

V(p(t) = — i ¢;In <pi(t)> : (5.19)

i=1 i
wherep; satisfieq[4.8), is a Lyapunov function that establishes global asympsitbility of

the dynamic systeis.18)with respect to the manifold.
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Proof. See Appendix. m

Another important quantity of an ergodic SEGS is the exgkamount of time to reach the
fittest cell, given a starting cell. We will make use of thddaling related definitions, which are

common to the theory of Markov chains [20].

Definition 11. Thereturn timeT} to cell z; is

T =inf{t > 1| X(t) = 2;}, (5.20)

whereT; = oo if X(t) # z; forallt > 1.

Thehitting timeof z; is taken to be

T, i X(0) # 1,
S; = (5.21)

Themean hitting timeo z; given an initial cellx; is defined as

> P (owj +1), Vi#j,
0 =E[S; | X(0) = ;] = { ¥ (5.22)
0, =7,
T
T
If we letl = {1 1 ... 1| andD; be a diagonal matrix with ones on the diagonal except
one zero at positiofy, j), then
Alternatively,
o; = (I-D,P)'Dj1, (5.24)

wherel is then x n identity matrix.
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Theorem 12. For the ergodic SEGSE = (X, R, P, G, F'), assume that there exists a unique index

I such thatF'(z;) is maximized foi = I. Then for alli # I,
1. ]\}1_120 o7 exists, and
2. o, is a strictly decreasing function d¥.
Proof. See Appendix. m

Hence, a trade-off exists between resilient and oppotticritehavior of the SEGS, and the
expected hitting time of the optimizer, with the trade-afhtrolled by the level of selectivityy.
That is, increasingV reduces the mean hitting time to the fittest cell but alsoetesas resiliency

and opportunism.
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Chapter 6

lllustrative Example of a Selective

Evolutionary Generation System

We illustrate the theory in this paper with an example in taog

6.1 Non-symmetric Matrix of Generation Probabilities

Consider the evolutionary generation systexh R, P, G), where
o X = {x1,x2},
o R={ry,r},
o P(ry) =p,P(r2) =1—p,p#0,

o G(x1,7r1) = 29, G(x1,19) = 11, G(22,71) = T2, ANAG (9, 72) = 1 (S€€ FigLE1).

r

)
Figure 6.1: The directed graph of the example in Chdptér 6.1.
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The matrix of generation probabilities for this evolutiopgeneration system is

L—m2 M2 l—p p
vy = = : (6.1)
Yo 1= IL—p p
Let F(z1) = f1 andF(z2) = fo. Let N be a finite level of selectivity. Utilizing (517), the

matrix of transition probabilities for the selective eviddiary generation system is

1 Y+ (=) fy) Y2 f3'
1 2 Yo f1 (L= y) fi¥ + f5
This SEGS is both aperiodic and positive recurrent, andédyesrgodic.
The stationary distribution of the SEGS can be computed to be
™= : {721fN ’lefN] : (6.3)
Yo fi¥ + Y12 fs' ! 2
Note that the ratio of the stationary probabilities of the tells is
T Y2fs pfs
Since this ratio is not equal to
h ) "
e ) 6.5
(fz (©:5)

the SEGS does not behave rationally exceppfer(0.5. Moreover, note that fgr = 0.5, the matrix

of generation probabilitie$ (6.1) is symmetric. Hences #sample illustrates that asymmetry of
the matrix of generation probabilities may lead to behathat is not rational. As a result, it
is possible that, for smalN, the most fit cell is not the most probable cell at steadyest&or

instance, take = 0.1, N =1, f; = 1 and f, = 2. We obtain

0.9

0.9+0.2 0818, (6.6)

US!
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and
0.2

= — ~ 0.182. 6.7
09+0.2 8 (6.7)

Uy

This is why rationality is desired for optimization.

6.2 Symmetric Matrix of Generation Probabilities

Consider the evolutionary generation systexh R, P, G), where
o X = {x1,22},
o R={ry,r},
® P(r)=p, P(r2) =1-p,p#0,

o G(x1,7r1) = 29, G(x1,19) = 11, G(22,71) = 71, aNAG (22, 75) = 15 (SEE FigLER).

1

1
Figure 6.2: The directed graph of the example in Chdptér 6.2.

The matrix of generation probabilities for this evolutiopgeneration system is

L =712 Y12 I=p p
y = — . (6.8)
Y1 L= p l1—p
Let F(z1) = f1 andF(z3) = fo. Let N be a finite level of selectivity. Utilizing (517), the

matrix of transition probabilities for the selective evibddunary generation system is

1 N+ (L= m2) fy Yz fa'

I . (6.9)
S+ 1 Yar fiY (1 =) [V + £
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This SEGS is both aperiodic and positive recurrent, andédnesrgodic.

The stationary distribution of the SEGS can be computed to be

1
T =
Yor I + Y12 S5

[’721f1N 712ng] : (6.10)

The example has been constructed suchhat ~,; = p, and so this ergodic SEGS is rational.

Taking partial derivatives, the extrinsic and intrinsisiliency equations of the two cells of the

SEGS are
N N—1 N
P11 = lefl ~ (1 . ZQlfl N) 7 (611)
Yorfi' + m2fs Yorfi' + m2fa
_Nm(1-m) 40, (6.12)
fi
—721f1N N—1
P12 = Nyiaf. ) (6-13)
(Yo S+ ma V) ’
—N
— Ty, (6.14)
fa
—712sz N—1
P21 = Nvyai f ) (6.15)
(Yo Y+ ma V) '
—N
_Thmm Ly (6.16)
i
Nyiofy ™! ( Y2 f )
_ 1— , 6.17
P2 Yor [ + 2S5 Yor [T + Y12 f8 ( )
N 1—
_ “(f“) £0. (6.18)
2

These equations match the theoretical results statedopisdyi If v were not symmetric, this
SEGS still happens to be resilient.

If fi > f», the mean hitting time te, is

g1 = s (619)
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and if f, > f;, the mean hitting time ta, is

IN+rY
M2 fy

In the limit as/N approaches infinity, we have

) 0
lim o =
N—o0 1
721
and -
1
]\}im oy = Y12
— 00
0

as expected from the proof of Theorem 12.
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Chapter 7

Evolution of Flapping Wing Gaits

One possible application of selective evolutionary geti@masystems is the on-line selection of
flapping wing gaits during flight. This application requiresilient and opportunistic optimization
because mission phase transitions may change the fitndss airrent flapping gait. For instance,
a micro air vehicle may scout a target by favoring a hoveriognf of flapping flight, engage
the target after increasing the fitness of descending flgpgamts, and then quickly escape after
deeming ascending gaits to be the most fit. Wind fluctuatiatismeach mission phase are another
example of possible fitness perturbations.

Current optimization of low Reynolds number flapping gaitsuiegs multiple iterations of
computationally expensive three dimensional flow simalati on multiple nodes taking days, or
even weeks, to complete [45]. Moreover, these simulati@pedd on flow model physics that is
not well understood. Thus, there is a need for a computdijoim@xpensive, model-independent,
resilient, opportunistic, global, and on-line selectieattnique for flapping wing flight.

There are examples of flapping gait evolution in the liter@{d6—49]. The results presented
in these works are either complicated by hardware-specifezactions or derived from aerody-
namic and hardware models with inaccurate assumptions &eady fluid flow) for simplicity.
The tolerance to fitness function perturbations is also rRatrened. Our contributions in this

area are unigue because we achieve resilient and oppaituiapping gaits without significant
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computation.

7.1 Surrogate Model

The following example applies the theory developed in thisgy to a validated model that approx-
imates the real-world physics of flapping flight. The modedipoiis a scalar for every acceptable
input vector, and this scalar output makes it easy to disandsverify claims of resiliency and
opportunism for a realistic application.

The surrogate model for hovering flight [50] predicts a liftefficient, C;,, for a prescribed

flapping motion with various input kinematic parametersisftapping motion is described by

h(t) = hy(t) sin(wt), (7.1)

a(t) =90 — oy, (t) sin (wt + ¢4 (1)), (7.2)

whereh,(t) € [1,2] anda,(t) € [45,80] are the piecewise-constant amplitudes of flapping stroke
height and pitch respectively,is a frequency that depends bpand a constant Reynolds number
of 100, andy,(t) € [60,120] is the piecewise-constant phase shift angle for flappinchpiThe
flapping motion described in_(7.1)—(¥.2) leads to the commpr of a lift coefficient(C, through

the surrogate model. Hence, the hovering flapping flightlerabgiven a time history of the target
lift coefficient, Cy,,_ (), determine suitable time-varying flapping wing kinematicgmeters that
meet the target.

We utilize the following evolutionary generation systgmy, R, P, G).

e The set of cellsX, is the set of ordered tripld%,, (1), aq (1) , do (1)), Where

he () € {1,1.1,1.2,...,1.9,2}, (7.3)
ag (1) € {45,46,47,...,79,80}, (7.4)
oo (t) € {60,61,62,...,119,120}. (7.5)
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e The set of resources, is the set{ry,ry, 73,74, 75,76}, With r; = €;, 1 < i < 6 (wheree;

are the standard basis vectors ).

e The probability mass function oR, P, is the discrete uniform distribution.

e The generation functiorty, applied toX as

G ((ha (1), a (t) , da (1)), 73), 1 <0 <6,

is the triple given by

01 =01 0 0 0 0 ha (1)

0 0 1 =10 0rit|a,()]

O 0 0 0 1 —1 Pa (1)

if 1<he(t) <2, 45 < a,(t) < 80,

60 < ¢, (t) < 120,

(ha (t),a (t), ¢a (), Otherwise.
Since the objective is fof'.(¢) to trackCy, (t), we use the fithess function
F(ha (1), a(t), 0o (t)) =

exp (= (K (Cr. (1) = Co(1)?).

where

K; =10,
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and

CL<t) =Cr (ha (t) y Qg (t) ; Pa (t>) (710)

is the output of the surrogate model. Note that the fitnesstiom in (7.8) has the following

properties.

e Akin to a membership function, the fitness function is noir&al so that a fithess between
0 and 1 is achieved depending on how well the model outputhmatthe desired output. A

fitness of 1 represents a perfect output match, whereas aditi® signifies a poor match.

e The fitness function utilizes a gain paramet&r,, which indicates how dissimilar the de-
sired output and a high-fitness true output are tolerate@ td_brger gains indicate that the
SEGS is more permissive of poor matches. The gain paransetdsa related to the level
of selectivity, N, because the latter is always used as an exponent of fitnesgeHin the

above fitness functiorfy; plays a similar role taV.

e Corresponding to the above, it can be shown that the fitnesgidmnis proportional to a

Gaussian probability density function with mean equal ®odbsired output, variance equal

1

to el and a constant of proportionality equal\}%.

7.2 Surrogate Model Results

A sample run of the evolution scheme wh&n= 5 is depicted in Figs. 711 {0 1.4. A cell triple that
achieves satisfactory performance is found within 1000egetions, and the scheme is resilient
because it quickly finds a new triple that achieves an acb&ptautput when the target lift coef-
ficient, and hence the fithess function, changes. In Eigstod713, the red vertical dashed lines
indicate a generation for which the evolved flapping forwend backward motion is illustrated in
Fig.[7.4.

For generations 1, 900, 1025, and 2000, the plots in[Elg. ach eisplay 10 snapshots of a

15% elliptical airfoil through a flapping half-stroke. Thelisl circle represents the leading edge
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of the airfoil, which moves in an aircraft body-fixed refecerframe with neutral position at (0,0).
The arrows on the forward half-stroke plots indicate thatdhfoil travels from the most rearward
position to the most forward position, whereas the oppasitieue for a backward half-stroke.
Although the periods of the strokes vary at different getiena because of the constant Reynolds
number, the snapshots are taken at the same fractionatipateryval. Therefore, a stroke with
more spacing between snapshots has a faster motion thaoke stith snapshots that are closely
spaced.

Typically, the scheme averages 1 minute 18 seconds to certtpeibutput of 1000 generations
while running in MATLAB on a 2.50 GHz dual-core processortgpwith 4.00 GB of RAM and
the Windows Vista operating system.

0.6

Coefficient of Lift
o
S

o
)

0 500 1000 1500 2000
Generation

Figure 7.1: Target (dashed black) and actual (solid bldegdefficients per generation.

Fitness

L : : L
0 500 1000 1500 2000
Generation

Figure 7.2: Fitness value per generation.
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Figure 7.3: Flapping wing kinematic parameters per geimrat
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Figure 7.4: Snapshots of the forward and back half-strokésedlapping wing sampled at the 1st,
900th, 1025th, and 2000th generations.

7.3 Theodorsen-Garrick Model

This example utilizes the developed theory and a model erabdy unsteady flow equations to
consider the standard reference-tracking problem in obsyistems within the context of flapping
flight. The work here is different from [51-57] in that we ewelflapping wing parameters for tra-
jectory tracking, instead of taking a control-theoretipegach. The chosen model outputs forces
from which trajectories can be computed, and these trajestare then analyzed by a SEGS. This

approach, and the other differences from the previous eba(fgrward motion of the flapping
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wing, incorporation of actual physics, and an addition ®ltterature), are a legitimate reason to
include the application here.

The Theodorsen-Garrick model [58, 59] predicts the lift #mdst forces on a flat plate under-
going a prescribed flapping motion with various input kinémparameters. This flapping motion

is described by

h(t) = ha(t)sin (w (t) t + én (1)), (7.11)

at) = ag(t)sin(w ()t + o (1)), (7.12)

whereh,(t) € (0,1] anda,(t) € [—0.5,0.5] are the piecewise-constant amplitudes of flapping
stroke height and angle of attack respectivelyt) € (0, 1] is a piecewise-constant frequency,
and¢y(t) € [—0.5,0.5] and¢,(t) € [—0.5,0.5] are the piecewise-constant phase shift angles for
flapping stroke height and angle of attack, respectively fldgpping motion described in (7]11)—
(Z.12) leads to the computation of lift and thrust forcestiyh the equations stated in [59]. These
forces determine the trajectory followed by the flappinggvihence, the flapping flight motion
problem: given a target trajectory (e.g., a constant alétiorward motion trajectory), find suitable
flapping wing kinematic parameters that meet the target.

We utilize the following evolutionary generation systg, R, P, G).

e The set of cells,X, is the set of ordered pentuplés, (t),w (t),on (t), g (), da (1)),

where

ha (t) € {0.1,0.2,0.3,...,0.9,1}, (7.13)
w (t) € {0.05,0.1,0.15,...,0.95,1}, (7.14)
on (t) € {—0.5,—0.45,—0.4,...,0.45,0.5}, (7.15)
g (t) € {—0.5,-0.45,—0.4,...,0.45,0.5}, (7.16)
o (1) € {—0.5,—0.45,-0.4,...,0.45,0.5}. (7.17)
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e The set of resource®, is the set{ry, ro, r3, 74,75, 76, 77,78, 79, 10}, With r; = €;, 1 < i <

10 (wheree; are the standard basis vectorsdf).
e The probability mass function oR, P, is the discrete uniform distribution.

e The generation functiorty, applied toX as

G ((ha(t),w(t),dn (), aa(t), da(t)) i),
1<i<10, (7.18)
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is the pentuple given by

1x 1072Ar; + on (t)| » WhereA =

0O 0 0 0 5 =50 0 0 0] (7.19)
0O 0 0 0 0 0 5 -5 0 0
O 0 0 0 0 0 0 0 5 =5

if 0.1 <h,(t) <1, 005 <w(t) <1,

—0.5 < ¢y (t) <0.5, —0.5 < o (t) < 0.5,

—0.5 < ¢q (t) < 0.5,

(ha () ,w (1), 0n (1) , a4 (t) , 00 (t)), Otherwise.

The flapping wing parameters evolved by the SEGS are inputthé Theodorsen-Garrick

model, which outputs lift.(7) and time-averaged-thru$t(7) over timer. These forces are in

45



turn inputs for the following double-integrator, unit-nsaging trajectory dynamics,

(1) 001 0_ x(7) 00

y(7) _ 00 0 1| ]|y(n) N 0 0f [L(7) | (7.20)

0(7) 0 0 0 0] |ve(7) L 0| |T(r)

Uy (7) 0 0 0 0f |vy(r) 01

where(x (1) ,y (7)) is the trajectory of the center of mass of the flapping wingisTiajectory is
sampled times, yielding(z (k) ,y (k)), 1 < k < v. For eachs(k), the targey,.. (k) is computed.

Let

M=

[Yaes (k) — y (k)]
L (7.21)

v

AvgDistance(t) = &

be the mean difference between the target and currenttvagex Since the objective is to track

the target, we use the following fitness function for the SEGS

F(ha (t),w(t),0n (1), aa (t), ¢a () =

exp (— (O.lAngz'stance(t))2> : (7.22)

7.4 Theodorsen-Garrick Model Results

A sample initial trajectory together with a trajectory ab&d from that sample after 200 gen-
erations withNV = 5 are plotted in Figl_7I5, where the trajectories are depiotezt the same
period of time. The figure shows that the evolved kinematrapeeters reduce altitude excursions
away from the target trajectory by a factor of four while iatitg roughly the same amount of
time-averaged-thrust that was specified by the initial $&irematic parameters. Moreover, the
average evolved trajectory tracks the constant altitudeel® trajectory, while the average initial
trajectory does not.

The scheme requires, on average, 2 minutes 34 seconds taitethp output of 200 genera-
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tions while running in MATLAB on a 2.50 GHz dual-core proceskptop with 4.00 GB of RAM

and the Windows Vista operating system.

25 T T
=—Initial Trajectory

20 -+ Evolved Trajectory
---Reference Trajectory

=
¢

Y Position
B
o

e .

0 .. 60
X Position

Figure 7.5: Target trajectory (dashed black), initialécpry (solid blue) and the 200th evolved
(dashed-dotted red) trajectory.
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Chapter 8

Conclusions and Future Work

This paper has proposed a novel on-line global optimizatiategy by demonstrating and utilizing
the fact that the desirable characteristics of resiliemzy @portunism are guaranteed by rational
behavior. The ratio of the stationary probability of theippter of a fitness function to any other
element’s stationary probability is given by

N
7TIZ<F($I)> 1<j<n

T \F(z)) - (8.1)

whereF (z;) > F(z;) for all : implies that cellz; is the most likely. In the limit asv approaches
infinity, 7; approaches 1, and standard optimization is recovered. di@necal genetic algorithm
with fitness proportional selection and the (1+1)-ES stpptmre particular cases of the proposed
scheme.

Although rational behavior suggests optimization dedsithat are based on global knowl-

edge, this paper proves that rationality may be achieveadigir a sequence of local decisions,

X(t+ 1) = Select(X(t), G(X(t), R(t)), N), (8.2)

that require limited knowledge of the objective functiorhug, each step of the proposed scheme

is also computationally inexpensive.
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Resiliency and opportunism are achieved at the expense ofd¢la@ hitting time to the opti-
mizer, and the trade-off is managed through the level otsigley N. The resiliency of a SEGS is
a conserved quantity, and any improvements to the resylieha particular element decreases the
resiliency of other elements.

We have utilized our technique to successfully develogieesinovering and forward-motion
flapping wing gaits without expending significant computateffort.

The work here may be extended to the case of multi-objedtaegto) optimization through a
suitable definition of the fitness function. Future work udes understanding the origins of the
Lyapunov function that characterizes a SEGS, investigdtie implications of time-reversibility,
and exploring parallel computing implementations of thawkv We will also seek a conservation

law for resiliency and mean hitting time.
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Appendix A

Proofs

Theorem(1.

Proof. To show that[(4.]2) implies Markov chain rational behaviamsider the ratio of any; to
m;,1 # j, where each satisfiels (#.2). Equatibn{4.1) follows imntetiia
To show that Markov chain rational behavior implies [4.2¢, begin with

n Tk 1 }
T T 1<u S n,
k=1 T T
which, using[(4.1), yields
n F(:@)N 1 .
=—,1<1<n.
kZ::l (F(%) i
Multiplying by F(x;)" and solving forr; yields [4.2), which completes the proof. [

Theorem[2.

Proof. We use the method of Karush-Kuhn-Tucker (KKT) multiplieossblve the optimization
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problem
subject to

—7T¢<O,1§i§n.

Let L(my, ..oy Ty Ay i1y v oy ) =

_ iF(xi)Nln(m) + A (i T — 1) — é#iﬂ‘i.

=1 =1
The KKT necessary conditions for optimality are

—F ()"

U

The first necessary condition becomes
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Sincepu;m; = 0 for all 7, we obtain

—F(z)N + M =0,1<i<n.

Next, the constraint; > 0 for all ; and the positive nature df(x;)" imply that\ # 0. Therefore,

Sincefj m; = 1, we find that
=1

A= Z F(xz)N,
=1
and hence,
F(x)N
57w

Thus, the stationary distribution in_(4.2) satisfies the @irder necessary conditions for optimality.
Moreover, we have

0?® ()

871']'87'('1'

= 0forj # 1,

OP0(mw)  F(a;)V

7 2
on; T

> 0.

Hence, the optimization problem has a strictly convex costfion and linear constraints. Thus,
the solution of the first order necessary conditions is tlodal optimizer, which completes the

proof. ]
Theorem[3.

Proof. Similar to Theorem |2, we can use the method of Karush-Kuhokdiu(KKT) multipliers
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to solve the following optimization problem for arbitragyc D,,:

min — Z wi In(m;),
i1

ﬂEDn

which is equivalent to
subject to

—m; <0,1<i<n.
This is a scaled version of Theoréin 2, and therefore the reteabf the proof is omitted.
Theorem[4.

Proof. We prove both parts of this theorem directly. Consider that

—Nﬂ'ﬂTj

By substitution p;; is 0. Similarly,
=0
. Nﬂ'i (1 — 7TZ')
pu N—o - F(xl) NZO’
_ N F@)t [ F)"
k=1 k=1 N=0

By substitution p;; is also 0.
N=0

For the second part of the theorem, we need the following lartiat can be easily proven
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using L'Hopital’s rule.
Lemma 2. Let0 < a < 1. Then]\}im Na¥ = 0.

Let I be the index for whiclF’(x;) is maximized, and assume thais unique. Then,

N
F(xJ)N —0,Vj+#1, and
N—oo F(flﬁ[)

Consider that

F(z)" F(z)"

Now for all i # j, wherei # I andj # I, the application of Lemmia 2 with = F(‘”l |mpI|es
that]\}l_rgo pij = 0.
= ().

If i = I # j, then the application of Lemnia 2 with= 7

Lastly, if: #£ j = I, then the application of Lemn@Zwﬁh— Z) |mpI|es that hm L pij = 0.

Thus, for alli andj, ]\}lm pij = 0.

Similarly,
N (1 —m;)
A}m;o Pii = h% Flz)
y N  F(z)" . F(z)Y
= lim m ,
N—oo F(xz) - F(:L‘k) $ F(:Ek)
1
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If i # I, then the application of Lemnia 2 with= g((;’f[)) implies that lim p;; = 0.

If : = I, then we have

N - F(ﬂfk)z
Fan™ = F)
N N
lim p; = lim Pl)” k1

N—oo N—oo F(l‘[) i F(xk)N L F(zk)N
p=1 F(

) = Flan)®™

The application of Lemmi 2 with = ?g";’;g a total ofn — 1 times implies thatlim p;; = 0.

Thus, for allz, A}im pi = 0. This completes the proof. O]

Theorem[5.

Proof. To show that rational behavior implies that the time-hormegrus, irreducible, ergodic
Markov chain( X, P) is resilient and opportunistic, consider (4.16) dnd (4.&hjich hold because
the stationary distributiomr has the closed form expressién (4.2). By Definifibm 55> 0 Vi since
the Markov chain is ergodidy > 0 since the Markov chain is selective, aAdz;) > 0 Vi since
the fitness function is positive. Hengg; # 0 Vi andyj, and(.X, P) is resilient and opportunistic.

This completes the proof. n
Theorem[B.

Proof. To show that ergodicity is a necessary condition for the #iramogeneous, irreducible, er-
godic Markov chain{ X, P) to be resilient and opportunistic, suppose that the chaioti®rgodic.
Then the chain is either not positive recurrent (i.e., itul recurrent or transient) or it is periodic.
If the chain is not positive recurrent, then there existsagest;, with zero stationary probability.
Suppose now that the fitness function is perturbed suchttbdithess of this staté,(z;), becomes
the optimal fitness value. Since the stationary probaholity; is zero, state; is never visited, and

therefore never considered as the optimizer. We hgve Or;/0F (x;) = 0, and hencé X, P) is
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not resilient or opportunistic. If the chain is periodiceththe stationary probability distribution

does not exist, and resiliency and opportunism are not dkfifleis completes the proof. n

Lemmall.

Proof. We prove the claim directly. Using (5.3), we have

M=
NE

04Kk

3 -

k=1

<.
Il
—_

rllﬂs
M=

0ijkPks

i

—_

—_
.

I
] MS

n
Z ijk-

n
Now, > d;;x = 1 because celt; and resource; generate a unique cel(z;, r). Therefore,
j=1

> v = k-1,
= =1
=> p,=1
k=1

This completes the proof.

Theorem[7.

Proof. We prove the claim directly. Using (5.7), we have

Z-PZ] Z-P’LJ+RZ7

j=1 j=1
G

) PN NI 3 S S
= 2. Fn) N ] i - F(z;) N g

=11+ (23) =1+ (5)

n 1 1
= Z - N T ~ | Vij T Vi

— (z;) F(x;)

S+ (F) 1+ ()
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3

I
=
<O

+
2

o
bl
LU

I
\E
=2
<.

Il

—

<.
Il
_

This completes the proof. n
Theorem|[8.

Proof. This is a direct proof. We begin by noting that

R T
F(z;)

Yij, I Fx) < F(x),

and

. . L 1
]\}lil(l)o P, = ]\}lgéo Yii + ; w%j )
it (75)

n

= Yii + Z Vij>

7j=1
J#1
F(x;)>F(x5)
=1~ Z Yij-
7j=1
J#i

F(z;)<F(x;)

Without loss of generality, assume that the cells of the SBfé®rdered according to decreas-
ing fitness value, so that the indéx= 1. The matrix]\}i_xgoP is therefore a lower triangular matrix.
Furthermore hféo Py =1.

Consider the row vectov = [1 0 ... o} The product of this row vector with the lower

triangular matrixj&im P is the first row of]\}im P = {1 0 ... o} =v.
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Therefore, the row vector = [1 0 ... 0} is a left eigenvector oj@im P, with correspond-

ing eigenvalud (i.e.,leim P=v). Hence,]\}im 7 = v, and the proof is complete. O
Theorem[9.
Proof. We directly show that the row vecter = [7?1 7y ... w,|, Wherer; satisfies[(4.2), is a

left eigenvector oP, the matrix of transition probabilities fdr, with corresponding eigenvalue 1.

If the matrix of generation probabilities, is symmetric, then
Yij = Vi, 1 < 1,5 < n,

or equivalently,
Z 5ijkpk = Z 5jz‘k:pk-
k=1 k=1

Consider the row vector = wP. Then

n
vj =>_miPy,
=1

n n
=Y mPj+m 1= Pil,
i=1 i=1
i) i#]
n n
= mbPy+ 7= Ml
i=1 =1
i£j i#]

mf o F (@)Y F (z)" %
n 0ijkDk
2 53 F (a)V F ()" + F ( J)ngl ’
i#] \g=1
+7Tj
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n o F ()Y F ()™ S
-2 | = ~ N ¥ D OjikPk
=1\ > F(x,) F(z)" + F(z) =
/L;é.] a=1
This reduces ta; becausey is symmetric. Hencer = wP. O

Theorem[10.

Proof. We directly show that; P;; = 7, P;; for all i andj. If the matrix of generation probabilities,
~, IS symmetric, then

Yij = Vi, 1 <i,7 < n,

or equivalently,

> 0iepk =Y Sjipr, 1 < 1,5 <.
k=1 k=1

Considerr; P;;. Using [4.2),[(5.B), and (5.7), we obtain

= 51 ikPk>
> F (2,)Y F(z))" + F (z;)" kz::I !

()" F(2:)"

m
)

where the second equation uses the symmetry.oHence, the Markov chain representing the

stochastic dynamics of the ergodic SEGS is time-reversible ]
Theorem[11.

Proof. We use Lyapunov’s Method and the LaSalle Invariance Prie¢gD, 61] to directly prove

this theorem.

For the ergodic SEGSE = (X, R, P, G, F) with a symmetric matrix of generation probabili-
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ties,~, consider the discrete-time dynamic system described by

p(t+1) =p()P,

whereP is the matrix of transition probabilities fdt, andp(¢) is ann-dimensional row vector at
time¢. Here,p(t) is the ergodic probability distribution over the statesraett, and therefore the
components op satisfyp;(t) > 0, 1 < i < n, andipi(t) = 1. Since the SEGS is ergodic and
irreducible, a unique equilibrium stationary distrigmimr these dynamics existg,rgo p(t) =,
with componentsr; satisfying [4.2).

Let us defingy(t) = p(t) — =, so that the transformed discrete-time dynamic system,
q(t+1) =(q(t) + )P —m,
has an equilibrium at the origin. The function
_ Zn: ;I (pi(t)> 7
i=1 i

wherey; satisfies[(4J6), may be rewritten as

V(a(t) Z% <)+m>

Pi

We first check the value of this transformed candidate Lyapleguation at the origin of the

transformed system. We have

V(0+m) = nglln<z>:—z%lnl:0
i=1

becauser = .

Next, we have to show thaftq(t) # 0, V(q(t) + o) > 0. But this follows directly from (the
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second equivalent restatement of) Theorém 3. This is becays) # 0,

Viat) +m) = =X ln (pi(”) ,

Pi

which is always positive according to the theorem.

Now consideAV = V(q(t+1)+m) —V(q(t) + ). In the equations that follow, we assume,
without loss of generality, that the fitness value of eachafehe SEGS is greater than or equal to
one. (After all, if there exists ansuch tha) < F'(z;) < 1, then it is possible to find & € R*
to scale all the fitness values upward, so that fori,alk F'(x;) > 1. Define the new fithesses
F'(z;) = KF(x;), 1 <1 < n and observe that the Markov chain representation of the SEGS

unchanged).

AV =V(p(t+1)) = V(p(t)),

N (BEED 1 (P

= jzl(pjl ( QOj )"‘JZISDJI (QO] )7
29! (i)
n i:lpZ(t)Pl]

:—;gpjln = j(t) )

> N 1 & pit)F(x)N

N ;%1 <pj(t);F(xi)N+F(ﬂfj)N>’

Now because we have assumed, without loss of generalityathithesses are greater than or

equal to one, we have

Pa)® o )
o) 2 FE)™ + Fo)




Therefore, we obtain

AV < —Z(pjlnl, or

j=1

AV <0.

That is,AV is negative semi-definite, as required by Lyapunov’s method

To apply LaSalle’s Invariance Principle, we have to fipd= {q(¢)|AV = 0}. Note that

AV =0,

= —Zgoj In1,
j=1

= _Z@jln (ZRl) )
j=1 i=1

which can be rewritten with Bayes’ Rule as

AV ==Y g;In <Z7”Pij> .
j=1 '

i=1 T

We had previously shown that
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Thus,AV = 0 implies thatr; = p;(t), 1 < i < n. But from the definition ofy(¢),

m = pi(t) — ai(?),

and we must have th&l" = 0 implies thatg;(t) = 0, 1 < i < n. Therefore, the only solution of
the transformed discrete-time dynamic system that canigéically in( is the trivial solution
q(t) = 0. Hence, the origin is an asymptotically stable equilibriftanthe transformed discrete-

time dynamic system, and therefore, the function

2

Vo) = - in (20,

is a Lyapunov function for the original system with the seveftorsp with componenty;(t) >

0, 1 <1< n, andznj pi(t) = 1 forming an invariant manifold. Moreover, since the Lyapuno
=1

function is radially unbounded, the equilibrium is glolyadlsymptotically stable, as claimed.]

Theorem[12.

Proof. We first prove directly that;; converges to a constant value for eads N approaches
infinity, before inductively showing that the value @f does indeed decrease with increasivg

We begin by noting that

]&gan,. = lim H(F(m))N%j’
F(zj)

Yij, I F(x) < F(x),

0, if F(x;) > F(z;),

and

N T
i F:)

Yij | »
>N
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n

=Yu + Z Yijs
j=1
J#i
F(x;)>F(x;)

n

=1~ Z Vij-

7j=1
J#i
F(a:z)<F(a:J)

Without loss of generality, assume that the cells of the SEB&Sordered according to de-
creasing fitness value, so that the index 1. The matrix]\}im P is therefore a lower triangular
matrix.

We seek

lim oy = lim (I - D,P)™'D/1,

N—o0 N—o0
= (I — Dl ]\}lm P)_lDl]_,
where(I — D, Nlim P)~! always exists due to the following.

(1) Nlim P is a lower triangular matrix with full rank. All of the loweriangular elements are

non-zero.
(i) D, is a lower triangular matrix with rank — 1.

(i) (Dy A}im P) is a matrix with zeros in row one, and elements that are emjéﬁlm P inall
other rows. Hence(D, Nlim P) has rankn — 1. Since this matrix is the product of lower

triangular matrices, it is also lower triangular.

(iv) (I-D, Nlim P) is a lower triangular matrix because it is the differenceowfér triangular
matrices. All lower triangular elements of this matrix aarzero, with the matrix element

(I-D, ]\Pm P);; = 1. Thus,(I - D, A}im P) has full rank.

Since(I — D, th P) is a lower triangular matrix with full rank, the equation

(1= Du Jim P) Ji o0 = Dul,
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may be solved by the iterative process of forward substituttd obtain unique constant values of

]\}im o, for eachi. For instance,
—00

lim o011, =0
N—oo 1 !

. 1
lim o9 = —,
N—oo ’)/21
1 + ’)/32( hm 0'21)
li _ N—o0
1m O3
N—o0 Y31 + V32
32
e
Y31 + V32’
1+ ’742( lim 0'21) + ")/43( lim 0'31)
lim o = N—o0 N—o00
41 )
N—oo Va1 + Va2 + Va3

T+ 22 4+ ()

Y21 ¥31+Y32

Ya1 + Va2 + Va3

and so on. This completes the convergence part of the proof.
We next use induction on the cell index to show thatis a strictly decreasing function o¥.

First, consider that
> Poy (051 + 1) + Poo
iz

o o

Hence,

1 + kzl PQkO'kl
. . k#2
lim o9 = lim ——————
N—oo 21 N—oo 1 — P22 ’
lim 1+ Z PQkO'kl
k=1

N—oo —
k#2

lim (1 — PQQ) ’

N—o0

n

1+ lim > Porora
N—oo | =1
k#2

1 —(1—121) ’
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1
— 4+ — lim Prora
721 Yo1 N—00 2_:

k7é2

Comparing this expression to the result that was calculagddrivard substitution above,

th Z P01, must decrease to 0 &6 increases. Thereforey, decreases a¥ increases.
— 00 k

k;;é2
For the induction hypothesis, assume that for aryl where2 < (s — 1) < (n — 1), we have

that for allt where2 < ¢t < (s — 1), the mean hitting time;; decreases witiv. We now show
thato,; is a decreasing function a¥f.

Consider that

Hence,

n
1+ kzl Pypop

. RT k;g
A o = i T

lim 1+ Zn: Psko'kl
k=1

. - k;«_és
w1 B
1+ lim (Z Piora
N—oo | =1
. k#s
- s—1 )
Vsk
k=1
1
1+ lim (Z Pgow + Z Pskakl)
_ —00 \ k=1 k=s+1
Z Vsk
k=1

Comparing this expression to the general result calculagédriward substitution,
]\}lm Z P01 must decrease to 0 &sincreases. By the induction hypotheslan Z P01
—0 k=s+1 N—oo =1
decreases with increasing. Thereforeg,, is a decreasing function d¥.
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Hence, for all where2 < i < n, an increase in the level of selectivity produces a cornedpo
ing decrease in the mean hitting time to the fittest cell, with Nlim o;1 approaching a unique

constant value for each O
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